Oligomerisation of Phenylacetylene at a Polynuclear Site; the Molecular Structure of $[Ru_6C(CO)_{12}(\mu_2-CO)(\eta^5-C_5H_3Ph_2)(\mu_3-CPh)]$

Jane L. Haggitt, Brian F. G. Johnson,* Alexander J. Blake and Simon Parsons

Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh, UK EH9 3JJ

The structure of the octahedral cluster [Ru₆C(CO)₁₂(μ_2 -CO)(η^5 -C₅H₃Ph₂)(μ_3 -CPh)] **1** is established by single crystal X-ray diffraction study, revealing both C=C bond scission of an acetylene ligand and oligomerisation to form a five-membered ring.

Interest in the reactions of alkynes with transition metal carbonyl clusters was initially fuelled by their potential as models for processes occurring at metal surfaces.¹ We have been interested in the reactions of alkynes with the ruthenium carbido cluster compound [Ru₆C(CO)₁₇], with a view to studying potential cyclo-trimerisation and -dimerisation, as observed with some mononuclear metal complexes (e.g. formation of [(n⁴-Ph₄C₄)PdCl₂]₂ from PdCl₂ and diphenylacetylene,² formation of $[(\eta^5-C_5H_5)Co(\eta^6-Me_6C_6)]$ from $(\eta^5 - C_5 H_5) Co(C_2 H_4)_2$ and dimethylacetylene).³ Although coordination of one or more alkynes to cluster compounds often leads to the formation of coordinated oligomers generated by linkage of the ligands, so far, studies of $[Ru_6C(CO)_{17}]$ with a range of alkynes have resulted in the formation of only mono-, bis-, tris- or tetrakis-alkyne substituted clusters.4-6 In these compounds the alkynes bond to triangular ruthenium faces in μ_2 : η^3 modes and show no evidence of oligometisation. In this communication we report the reaction of $[Ru_6C(CO)_{17}]$ with phenylacetylene, in which C=C bond scission and oligomerisation occur to form a hexanuclear ruthenium carbido cluster containing both an n5-bound diphenylcyclopentadienyl ligand and a μ_3 -bound C–Ph alkylidyne ligand.

Treatment of $[Ru_6C(CO)_{17}]$ with 2 equiv. of Me₃NO in the presence of excess phenylacetylene results primarily in the formation of $[Ru_6C(CO)_{15}(PhC_2H)]$ **2**, and three minor products, including $[Ru_6C(CO)_{12}(\mu_2-CO)(\eta^5-C_5H_3Ph_2)(\mu_3-CPh)]$ **1** in 7% yield. The products were separated by TLC and characterised on the basis of IR, ¹H NMR and FAB-MS for **2**⁵ and IR, ¹H NMR[†] and X-ray diffraction analysis[‡] for **1**.

The molecular structure of compound 1 is shown in Fig. 1. The metal framework consists of the familiar octahedron of ruthenium atoms and interstitial C carbido atom common to $[Ru_6C(CO)_{17}]^{9,10}$ and its arene^{11–13} and alkyne^{4–6} derivatives. The cluster compound is characterised by the presence of a diphenylcyclopentadienyl group n⁵-bound to a single ruthenium atom Ru(3) and a μ_3 -bound C-Ph alkylidyne ligand. There are thirteen carbonyl ligands: one bridging CO group spanning the Ru(4)-Ru(5) edge and 12 terminally bound carbonyls which are essentially linear. The compound contains a total of 86 valence electrons, characteristic of these octahedral clusters. The structure reveals a wide range of Ru–Ru bond lengths [2.755(1)-2.973(1) Å] with the three metal atoms bridged by the alkylidyne ligand exhibiting the shortest distances. The interstitial carbido atom is displaced towards the η^5 -coordinated Ru(3) atom, the Ru(3)–C(1) distance being 1.983(7) Å, noticeably shorter than the remaining five distances [2.029(6)–2.068(7) Å]. This behaviour has also been observed in arene substituted hexanuclear clusters such as [Ru₆C- $(CO)_{14}(\eta^6 - C_6 H_6)]^{11}$ $[Ru_6C(CO)_{14}(\eta^6-C_6H_4Me_2)]^{12}$ and $[Ru_6C(CO)_{14}(\eta^6-C_6H_3Me_3)]^{13}$ where there is a shift towards the Ru atom bearing the η^6 -bound arene. The bridging CO group is highly asymmetric as shown by the Ru(4)-C(51) and Ru(5)-C(51) [2.56(1) and 1.92(1) Å, respectively] bond distances, the longer Ru-C bond involving the Ru atom bound to the alkylidyne ligand. The five-membered ring is essentially planar with the phenyl rings positioned slightly above plane of the C_5 ring [C(331) elevation = 0.16 Å, C(351) elevation = 0.26 Å]. The two phenyl rings lie such that they form dihedral angles of 15.9° [C(331)–C(336)] and 18.3° [C(351)–C(356)] with respect to the cyclopentadienyl ring. The Ru–C(ring) distances range from 2.222(7) to 2.276(7) Å with the bonds to the carbon atoms connected to the phenyl rings being the longest [Ru(3)–C(33) = 2.262(6), Ru(3)–C(35) = 2.276(7) Å]. The coordination of the μ_3 -alkylidyne ligand is slightly asymmetric [Ru(3)–C(2) = 2.066(7), Ru(4)–C(2) = 2.110(7), Ru(3)–C(2) = 2.040(7) Å] with the longest bond associated with the ruthenium atom bonded to the bridging CO ligand.

The most striking feature in this structure is the presence of both an η^5 -diphenylcyclopentadienyl ligand and an alkylidyne C-Ph ligand, the formation of which requires the cleavage of a phenylacetylene C=C triple bond. The C₅ ring is formed by the condensation of two phenylacetylene ligands and the incorporation of a C-H fragment derived from the cleavage of a third alkyne ligand. The remaining C-Ph fragment from the C=C scission process forms the μ_3 -bound alkylidyne ligand capping a triangular ruthenium face. Although oligomerisation and/or C=C bond cleavage of alkynes in cluster compounds are common, most processes involve the formation metallacyclic rings, allyl ligands or alkylidyne ligands.¹⁴⁻¹⁸ There are very

Fig. 1 Molecular structure of $[Ru_6C(CO)_{12}(\mu_2-CO)(\eta^5-C_5H_3Ph_2)(\mu_3-CPh)]$ 1 with the hydrogen atoms omitted for clarity. The C atoms of the CO groups bear the same numbering as the corresponding O atoms. Selected bond lengths (Å): Ru(1)-Ru(2) 2.8607(11), Ru(1)-Ru(3) 2.8902(10), 2.9360(11), Ru(1)–Ru(5) 2.9321(12), Ru(2)-Ru(3)Ru(1)-Ru(4)2.9502(10), Ru(2)-Ru(5) 2.8965(12), Ru(2)-Ru(6) 2.9727(11), Ru(3)-Ru(4) 2.8299(11), Ru(3)-Ru(6) 2.7552(11), Ru(4)-Ru(5) 2.8245(10), Ru(4)-Ru(6) 2.7952(11), Ru(5)-Ru(6) 2.9317(10), Ru(1)-C(1) 2.049(7), Ru(2)-C(1) 2.029(6), Ru(3)-C(1) 1.983(7), Ru(4)-C(1) 2.057(6), Ru(5)-C(1) 2.068(7), Ru(6)-C(1) 2.043(7), Ru(3)-C(2) 2.066(7), Ru(4)-C(2) 2.110(7), Ru(6)-C(2) 2.040(7), C(2)-C(3) 1.465(9), Ru(3)-C(31) 2.233(7), Ru(3)-C(32) 2.232(7), Ru(3)-C(33) 2.262(6), Ru(3)-C(34) 2.222(7), Ru(3)-C(35) 2.276(7), C(33)-C(331) 1.484(10), C(35)-C(351) 1.465(11), mean C(ring)-C(ring) 1.42, mean Ru-C(CO terminal) 1.885, mean C-O(CO terminal) 1.14.

few examples where the alkyne oligomerises to give an organic cyclic ligand coordinated to the metals. 19,20

We wish to thank the EPSRC for financial support.

Received, 31st March 1995; Com. 5/02059J

Footnotes

† Spectroscopic data for 1: IR (CH₂Cl₂) v(CO)/cm⁻¹: 2073m, 2031s, 2019(sh)m, 2000w, 1982(sh)w, 1959w; ¹H NMR (CD₂Cl₂): δ 7.77–7.49 (m), 7.32–7.11 (m), 5.64(t), 5.45(d).

‡ Crystal data for 1: C₃₈H₁₈O₁₃Ru₆, M = 1288.9, triclinic, space group $P\overline{1}$, a = 10.875(2), b = 11.595(2), c = 15.324(3) Å, $\alpha = 92.87(2)$, $\beta = 95.69(4)$, $\gamma = 99.76(2)^\circ$, U = 1891 Å³, Z = 2, $D_c = 2.264$ g cm⁻³, μ (Mo-K α) = 2.403 mm⁻¹, F(000) = 1228. Data collection on a Stoë Stadi-4 fourcircle diffractometer with graphite-monochromated Mo-K α X-radiation yielded 4980 unique, absorption-corrected reflections ($2\theta_{max} = 45^\circ$), of which 4960 were used in all calculations. Following solution by direct methods,⁷ the structure was refined by full matrix least squares on F^2 with anisotropic temperature factors for all non-H atoms and with H atoms riding on their respective C atoms.⁸ At final convergence $R[F_o > 4\sigma(F_o), 4000$ data] = 0.0318, $wR[F^2$, all data] = 0.1135, $S[F^2] = 1.433$ for 514 parameters. Residual ΔF extrema lay in the range -0.97 to +0.68 e Å⁻³.

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

 E. Sappa, A. Tiripicchio and P. Braunstein, Chem. Rev., 1983, 83, 203.

- 2 P. M. Maitlis, Acc. Chem. Res., 1976, 9, 93.
- 3 K. Jonas, E. Deffense and D. Habermann, Angew. Chem., Int. Ed. Engl., 1983, 22, 716.
- 4 R. Mallors, The University of Edinburgh, unpublished results.
- 5 S. R. Drake, B. F. G. Johnson, J. Lewis, G. Conole and M. McPartlin, J. Chem. Soc., Dalton Trans., 1990, 995.
- 6 R. D. Adams and W. Wu, Organometallics, 1993, **12**, 1238.
- 7 G. M. Sheldrick, SHELXL-86, Acta Crystallogr., Sect. A, Fund. Crystallogr., 1990, 46, 467.
- 8 G. M. Sheldrick, SHELXL-93, Program for structure refinement, University of Göttingen, 1993.
- 9 A. Sirigu, M. Bianchi and E. Benedetti, J. Chem. Soc., Chem. Commun., 1969, 596.
- 10 D. Braga, F. Grepioni, P. J. Dyson, B. F. G. Johnson, P. Frediani, M. Bianchi and F. Piacenti, J. Chem. Soc., Dalton Trans., 1992, 2565.
- 11 P. J. Dyson, B. F. G. Johnson, J. Lewis, M. Martinelli, D. Braga and F. Grepioni, J. Am. Chem. Soc., 1993, 115, 9062.
- 12 D. Braga, F. Grepioni, E. Parisini, P. J. Dyson, A. J. Blake and B. F. G. Johnson, J. Chem. Soc., Dalton Trans., 1993, 2951.
- 13 D. Braga, F. Grepioni, B. F. G. Johnson, H. Chen and J. Lewis, J. Chem. Soc., Dalton Trans., 1991, 2559.
- 14 J.-S. Song, G. L. Geoffroy and A. L. Rheingold, *Inorg. Chem.*, 1992, 31, 1505.
- 15 J. T. Park, B. W. Woo, J.-H. Chung, S. C. Shim, J.-H. Lee, S.-S. Lim and I.-H. Suh, Organometallics, 1994, 13, 3384.
- 16 R. D. Adams and J. A. Belinski, Organometallics, 1991, 10, 2114.
- 17 Y. Chi and J. R. Shapley, Organometallics, 1985, 4, 1900.
- 18 C. P. Casey, R. A. Widenhoefer and S. L. Hallenbeck, Organometallics, 1993, 12, 3788.
- 19 S. Aime, L. Milone, E. Sappa and A. Tiripicchio, J. Chem. Soc., Dalton Trans., 1977, 227.
- 20 E. Sappa, A. Tiripicchio and A. M. Manotti Lanfredi, J. Chem. Soc., Dalton Trans., 1978, 552.